Process of soil pollution and remediation

Contact: Meri Barbafieri (Unit of Pisa)
-> Staff
-> Selected papers


fig3

Environmental pollution is a major threat to our planet. Pollution of precious water supplies is particularly important. Electric utilities, oil refineries, and chemical plants produce huge amounts of contaminated wastewater each year. In agriculture, toxic levels of various elements pollute the groundwater as a result of excessive fertilizer application (e.g., nitrates and phosphates), and through leaching of naturally occurring trace elements in the soil after irrigation (e.g., selenium). Pollution of both water and soil poses a significant hazard to human health.

fig0

Finding suitable treatment technologies to clean up contaminated water and soil is not easy. Many technologies that are available are usually very expensive. Because the need for practical and cost-effective procedures for cleaning up contaminated water and soil is so great, researchers in this group have dedicated themselves to achieving this goal through the study of process involved in soil pollution and analyze the best solution to apply. Among many technologies considered, Phytoremediation appears as a cost-effective and environment-friendly approach for cleanup.
Many agricultural and industrial sites have soils that are contaminated with toxic heavy metals, metalloids (e.g., boron, arsenic), or organic pollutants (e.g., PAH’s) These sites may be remediated or restored using different Phytoremediation approaches. Phytoextraction utilizes the ability of certain plants to remove contaminants from soil and water and accumulate them in plant tissues that may then be harvested and removed from the site. Phytostabilization on the other hand, uses plants to immobilize contaminants chemically and physically at the site, thereby preventing their movement to ground waters or to the atmosphere (i.e., through soil erosion and wind). Phytovolatilization makes use of plants and their associated microbes to convert contaminants to a volatile form and remove them from the local ecosystem. Phytodetoxification involves the ability of plants to change the chemical species of the contaminant to a less toxic form, e.g., plants can take up toxic hexavalent chromium and convert it to non-toxic trivalent chromium.

Research:

Essential contribution is devoted to the right selection of strategies to recover contaminated soil. The choice is based of knowledge of basic principles of soil characteristics and analysis of pollutants speciation and bioavailability.
Among the different remediation technologies the main activities are focused on Phytoremediation under public and private funded contracts. Consolidate knowledge and experience have been gained in the last 15 years and are related to:

  • Basic research: to study and implement the technology. Investigations under multidisciplinary approach are conducted in the evaluation of different plant species on contaminant accumulation and distribution evaluating the strategic factors of phytoremediation processes. Phytotoxicity is studied evaluating Biomarkers of oxidative stress and metal induced protein in cooperation with CNR-IBF (Dr. E. Morelli) and genotoxicity in cooperation with CNR-IBBA (Dr. L. Giorgetti).
  • Site specific applicability test: feasibility tests are necessary to develop before any technology application. Phytoremediation also is subjected to this demand. The studies are carried out at different experimental scale (see the scheme in figure below). Field test are particularly important in the technology evaluation and experimentation.

Fig.1

Other related studies/activities are focused on:

  • metal bioavailability and phytoextraction technology
  • study of behavior and transport/translocation of nanoparticles in the soil/plant system (cooperation with Prof. George Gardea Torresday, Texas University, Chemistry Department: Cerium nanoparticles tolerance and toxicity in Helianthus annus)
  • in-situ characterization of metal polluted soil by means LIBS

Selected Papers [Anthropized and urban environments]

1- Pini R., Bretzel F., Sparvoli E., Pezzarossa B., Scatena M. Compost and wildflowers for the management of urban derelict soils. In: Applied and Environmental Soil Science, vol. 2012 article n. 832608. Hindawi, 2012.     

1- Pini R., Bretzel F., Cinelli F. Substrates to contrast compaction in urban tree plantings. In: SUITMA - VI International Conference on Soils of Urban, Industrial, Traffic, Mining, and Military Areas (Marrakech, Marocco, 3-7 ottobre 2011).   

3- Bretzel F., Calderisi M. Contribution of a municipal solid waste incinerator to the trace metals in the surrounding soil. In: Environmental Monitoring and Assessment, vol. 182 pp. 523 - 533. Springer, 2011.     

4- Barbafieri M., Dadea C., Tassi E. L., Bretzel F., Fanfani L. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. In: International Journal of Phytoremediation, vol. 13 pp. 985 - 997. Taylor & Francis, 2011.        

5- Bretzel F., Della Maggiore A., Pezzarossa B. La natura va a scuola. Linee guida per la creazione di un prato fiorito nel giardino delle scuole. 48 p. Sesto Fiorentino (FI): Press Service srl, 2010.  

6- Bretzel F. Impianti naturalistici di specie erbacee spontanee. In: L'inserimento paesaggistico delle infrastrutture stradali: strumenti metodologici e buone pratiche di progetto. pp. 80 - 82. (Manuali e Linee Guida 65/2010). Roma: Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 2010.  

7- Bretzel F., Pezzarossa B. Sustainable management of urban landscape with wildflowers. In: II International Conference on Landscape and Urban Horticulture (Bologna, 9-13 giugno 2009). Proceedings, vol. Acta Horticulture n. 881 pp. 213 - 219. G. Prosdocimi Gianquinto & F. Orsini (eds.). International Society for Horticultural Science, 2010.  

8- Bretzel F. Fiori selvatici (wild flowers). In: La conservazione ex situ della biodiversità delle specie vegetali spontanee e coltivate in Italia. Stato dell'arte, criticità e azioni da compiere. pp. 5 - 6. B. Piotto, V. Giacanelli, S. Ercole (eds.). Roma: Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 2010.  

9- Bretzel F., Pezzarossa B., Benvenuti S., Bravi A., Malorgio F. Soil influence on the performance of 26 native herbaceous plants suitable for sustainable Maditerranean landscaping. In: ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, vol. 35 (5) pp. 657 - 663. Elsevier, 2009.     

10- Bretzel F., Benvenuti S., Frangioni E., Pistelli L. Physiological parameters and secondary metabolites in dandelion (Taraxacum officinale Weber) grown on contaminated urban solid runoff. In: SUITMA - V International Conference on Soil of Urban, Industrial, Traffic, Mining and Military Areas (New York, USA, 21-25 settembre 2009).   

Selected Papers [Process of soil pollution and remediation]

1- Pedron F., Petruzzelli G., Barbafieri M., Tassi E. 2013. Evaluating bioavailable contaminant stripping for remediation of an industrial mercury contaminated soil. Pedosphere 23(1): 104-110.

2- Barbafieri M., Cassina L., Tassi E., Petruzzelli G., Pedron F., Ambrosini P. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. In: Journal of Hazardous Materials, vol. 231-232 pp. 36 - 42. Elsevier, 2012.  

3- Giansoldati V., Tassi E., Morelli E., Edi Gabellieri E., Pedron F., and Barbafieri M. 2012. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87: 1119-1125.

4- Barbafieri M., Dadea C., Tassi E. L., Bretzel F., Fanfani L. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation. In: International Journal of Phytoremediation, vol. 13 pp. 985 - 997. Taylor & Francis, 2011.        

5- Tassi E. L., Pedron F., Barbafieri M. Evaluating the absorption of boron by plants - A potential tool to remediate contaminated sediments from Cecina river basin in Italy. In: Water Air and Soil Pollution, vol. 216 pp. 275 - 287. Springer, 2011.     

6- Cassina L., Tassi E. L., Morelli E., Giorgetti L., Remorini D., Chaney R. L., Barbafieri M. Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. In: International Journal of Phytoremediation, vol. 13 (S1) pp. 90 - 101. Taylor & Francis, 2011.        

7- Barbafieri M., Pini R., Ciucci A., Tassi E. L. Field assessment of Pb in contaminated soils and in leaf mustard (Brassica juncea): the LIBS technique. In: Chemistry and Ecology, vol. 27 (Supplement Februeary 2011) pp. 161 - 169. Taylor & Francis, 2011.        

8- Pedron F., Petruzzelli G., Barbafieri M., Tassi E. L. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. In: CHEMOSPHERE, vol. 75 pp. 808 - 814. Elsevier, 2009.     

Selected Papers [Contaminants in high-risk areas]

1- Pedron F., Petruzzelli G. Green remediation strategies to improve the quality of contaminated soils. In: Chemistry and Ecology, vol. 27 (Supplement February) pp. 89 - 95. Taylor & Francis, 2011.        

2- Pedron F., Petruzzelli G., Barbafieri M., Tassi E. L., Ambrosini P., Patata L. Mercury mobilization in a contaminated industrial soil for plants based remediation. In: Communications in Soil Science and Plant Analysis, vol. 42 pp. 1 - 11. Taylor & Francis, 2011.        

3- Pedron F., Petruzzelli G., Barbafieri M., Tassi E. L., Ambrosini P., Patata L. Mercury mobilization in a contaminated industrial soil for plants based remediation. In: Communications in Soil Science and Plant Analysis, vol. 42 pp. 1 - 11. Taylor & Francis, 2011.        

4- Doumett S., Fibbi D., Azzarello E., Mancuso S., Mugnai S., Petruzzelli G., Del Bubba M. Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and paulownia tomentosa in a pilot-scale assisted phytoremediation study. In: International Journal of Phytoremediation, vol. 13 pp. 1 - 17. Taylor&Francis, 2011.     

5- Petruzzelli G., Pedron F., Rosellini I. Heavy metals in contaminated soils: "passive approach" as a tool for remediation. In: Geoitalia 2011 - VIII Forum Italiano di Scienze della Terra (Torino, 19-23 settembre 2011).   

6- Petruzzelli G., Pedron F. Bioavailability at heavy metal contaminated sites from conceptual model to remediation. In: Geoitalia 2011 - VIII Forum Italiano di Scienze della Terra (Torino, 19-23 settembre 2011).   

7- Pedron F., Petruzzelli G., Barbafieri M., Rosellini I., Ambrosini P., Patata L. Una rivisitazione della tecnologia di fitoestrazione alla luce del concetto di biodisponibilità. In: Siti Contaminati: esperienze negli interventi di risanamento. pp. 383 - 390. Maria Rosaria Boni, Carlo Collivignarelli, Federico G.A. Vagliasindi. Catania: CSISA Centro Studi Ingegneria Sanitaria Ambientale, 2011.  

8- Pedron F., Barbafieri M., Tassi E. L., Rosellini I., Petruzzelli G. Enhanced bioavailable contaminant stripping approach to clean.up mercury contaminated soil. In: SARCLE - Sustainable Approaches to Remediation of Contaminated Land in Europe (Gent, Belgio, 24-26 ottobre 2011).   

9- Barbafieri M., Tassi E. L., Pedron F., Petruzzelli G. Possibilità di impiego della fitoestrazione in sedimenti contaminati da Boro e Arsenico del fiume Cecina. In: RemTech 2011 - Remediation Technologies - V Salone sulle bonifiche dei siti contaminati e sulla riqualificazione del territorio (Ferrara, 28-30 settembre 2011). Atti, pp. 262 - 269. Daniele Cazzuffi e Ilaria Pietrini (eds.). DEA Edizioni, 2011.  

  1. F. Pedron, G. Petruzzelli, M. Barbafieri and E. Tassi. 2011.Evaluating Bioavailable Contaminant Stripping for Remediation of an Industrial Mercury - Contaminated Soil. Pedosphere. In press.

Selected Papers [Trace elements in the soil-plant system]

1- Pezzarossa B., Remorini D., Gentile M. L., Massai R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. In: Journal of the Science of Food and Agriculture, vol. 92 pp. 781 - 786. WILEY, 2012.     

2- Pezzarossa B., Gorini F., Petruzzelli G. Heavy metal and Selenium distribution and bioavailability in contaminated sites: a tool for phytoremediation. In: Dynamics and bioavailability of heavy metals in the rootzone. pp. 93 - 127. H. Magdi Selim (ed.). Boca Raton (FL) USA: CRC Press, 2011.  

3- Petruzzelli G., Gorini F., Pezzarossa B., Pedron F. The fate of pollutants in soil. In: CNR Environment and health inter-departmental project: present knowledge and prospects for future research. pp. 1 - 38. Roma: Istituto Salesiano Pio XI, 2010.  

4- Paoletti M. G., D'Incà A., Tonin E., Tonon S., Migliorini C., Petruzzelli G., Pezzarossa B., Gomiero T., Sommaggio D. Soil invertebrates as bio-indicators in a natural area converted fron agricultural use. The case study of Vallevecchia-Lugugnana in North-Eastern Italy. In: JOURNAL OF SUSTAINABLE AGRICULTURE, vol. 34 pp. 38 - 56. Taylor&Francis, 2010.  

5- Malorgio F., Diaz K. E., Ferrante A., Mensuali Sodi A., Pezzarossa B. Effect of Selenium addition on minimally processed leafy vegetables grown in floating system. In: JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol. 89-3 pp. 2243 - 2251. Society of Chemical Industry, 2009.     

6- Pezzarossa B., Remorini D., Piccotino D., Malagoli M., Massai R. Effects of selenate addition on selenium accumulation and plant groth of two Prunus rootstock genotypes. In: Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde, vol. 172 pp. 261 - 269. Wiley, 2009.     

7- Pezzarossa B., Petruzzelli G., Petacco F., Malorgio F., Ferri T. Absorption of selenium by lactuca sativa as affected by carboxymethylcellulose. In: CHEMOSPHERE, vol. 67 pp. 322 - 329. Elsevier, 2007.     

8- Di G. S., Lampis S., Malorgio F., Petruzzelli G., Pezzarossa B. Brassica juncea can improve selenite and selenate abatement in selenium contaminated soil through the aid of its rhizospheric bacterial population. In: PLANT AND SOIL, vol. 285 pp. 233 - 244. 2006.